
Stylish
Release 0.4.0

Jun 29, 2020

Contents

1 Introduction 3

2 Installing 5

3 Tutorial 7

4 Command line 9

5 API Reference 13

6 Release and migration notes 27

7 Glossary 29

8 Indices and tables 31

Python Module Index 33

Index 35

i

ii

Stylish, Release 0.4.0

Style transfer using Deep Neural Network.

Contents 1

Stylish, Release 0.4.0

2 Contents

CHAPTER 1

Introduction

A brief introduction to Stylish.

3

Stylish, Release 0.4.0

4 Chapter 1. Introduction

CHAPTER 2

Installing

Note: Using Virtualenv is recommended when evaluating or running locally.

Installation is simple with pip:

pip install stylish

2.1 Installing from source

You can also install manually from the source for more control. First obtain a copy of the source by either downloading
the zipball or cloning the public repository:

git clone github.com:buddly27/stylish.git

Then you can build and install the package into your current Python environment:

pip install .

If actively developing, you can perform an editable install that will link to the project source and reflect any local
changes made instantly:

pip install -e .

Note: If you plan on building documentation and running tests, run the following command instead to install required
extra packages for development:

pip install -e .[dev]

Alternatively, just build locally and manage yourself:

5

http://www.pip-installer.org/
https://github.com/buddly27/stylish/archive/master.zip

Stylish, Release 0.4.0

python setup.py build

2.1.1 Building documentation from source

Ensure you have installed the ‘extra’ packages required for building the documentation:

pip install -e .[doc]

Then you can build the documentation with the command:

python setup.py build_sphinx

View the result in your browser at:

file:///path/to/stylish/build/doc/html/index.html

2.1.2 Running tests against the source

Ensure you have installed the ‘extra’ packages required for running the tests:

pip install -e .[test]

Then run the tests as follows:

python setup.py -q test

You can also generate a coverage report when running tests:

python setup.py -q test --addopts "--cov --cov-report=html"

View the generated report at:

file:///path/to/stylish/htmlcov/index.html

6 Chapter 2. Installing

CHAPTER 3

Tutorial

A quick dive into using Stylish.

7

Stylish, Release 0.4.0

8 Chapter 3. Tutorial

CHAPTER 4

Command line

4.1 stylish

Style transfer using deep neural network

stylish [OPTIONS] COMMAND [ARGS]...

Options

--version
Show the version and exit.

-v, --verbosity <verbosity>
Set the logging output verbosity. [default: info]

Options debug|info|warning|error

4.1.1 apply

Apply a style generator model to an image.

stylish apply [OPTIONS]

Options

--model <model>
Path to trained style generator model which will be used to apply the style. [required]

-i, --input <input>
Path to image to transform. [required]

9

Stylish, Release 0.4.0

-o, --output <output>
Path to folder in which the transformed image will be saved. Current directory is used by default. [required]

4.1.2 download

Download necessary elements to train a style generator model

Example:

stylish download vgg19 stylish download coco2014 -o /tmp

stylish download [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

coco2014

Download COCO 2014 Training dataset (13GB).

stylish download coco2014 [OPTIONS]

Options

-o, --output <output>
Output path to save the element. Current directory is used by default.

vgg19

Download pre-trained Vgg19 model (549MB).

stylish download vgg19 [OPTIONS]

Options

-o, --output <output>
Output path to save the element (Current directory is used by default)

4.1.3 extract

Extract the style to an image.

stylish extract [OPTIONS]

Options

--vgg <vgg>
Path to Vgg19 pre-trained model in the MatConvNet data format.

-s, --style <style>
Path to image from which the style features will be extracted.

10 Chapter 4. Command line

Stylish, Release 0.4.0

-o, --output <output>
Path to folder in which the style pattern image will be saved. Current directory is used by default.

4.1.4 train

Train a style generator model.

stylish train [OPTIONS]

Options

--vgg <vgg>
Path to Vgg19 pre-trained model in the MatConvNet data format.

-s, --style <style>
Path to image from which the style features will be extracted.

-t, --training <training>
Path to a training dataset folder (e.g. COCO 2014).

--limit <limit>
Maximum number of files to use from the training dataset folder.

-l, --learning-rate <learning_rate>
Learning rate for optimizer. [default: 0.001]

-b, --batch-size <batch_size>
Batch size for training. [default: 4]

-e, --epochs <epochs>
Epochs to train for. [default: 2]

-C, --content-weight <content_weight>
Weight of content in loss function. [default: 7.5]

-S, --style-weight <style_weight>
Weight of style in loss function. [default: 100.0]

-T, --tv-weight <tv_weight>
Weight of total variation term in loss function. [default: 200.0]

-o, --output <output>
Path to folder in which the trained model will be saved. Current directory is used by default.

--log-path <log_path>
Path to extract the log information. Default is the same path as the output path.

4.1.5 transfer

Transfer a style to an image.

stylish transfer [OPTIONS]

4.1. stylish 11

Stylish, Release 0.4.0

Options

--vgg <vgg>
Path to Vgg19 pre-trained model in the MatConvNet data format.

-i, --input <input>
Path to image to transform. [required]

-s, --style <style>
Path to image from which the style features will be extracted.

-l, --learning-rate <learning_rate>
Learning rate for optimizer. [default: 0.001]

-I, --iterations <iterations>
Iterations to train for. [default: 100]

-C, --content-weight <content_weight>
Weight of content in loss function. [default: 7.5]

-S, --style-weight <style_weight>
Weight of style in loss function. [default: 100.0]

-T, --tv-weight <tv_weight>
Weight of total variation term in loss function. [default: 200.0]

-o, --output <output>
Path to folder in which the transformed image will be saved. Current directory is used by default.

--log-path <log_path>
Path to extract the log information. Default is the same path as the output path.

12 Chapter 4. Command line

CHAPTER 5

API Reference

5.1 stylish

stylish.transform_image(path, style_path, output_path, vgg_path, iterations=None, learn-
ing_rate=None, content_weight=None, style_weight=None,
tv_weight=None, content_layer=None, style_layers=None,
log_path=None)

Generate new image from path with style from another image.

Usage example:

>>> transform_image(
... "/path/to/image.jpg",
... "/path/to/style_image.jpg",
... "/path/to/output_image/",
... "/path/to/vgg_model.mat"
...)

Parameters

• path – path to the image to transform.

• style_path – path to an image from which the style features will be extracted.

• output_path – path where the transformed image will be generated.

• vgg_path – path to the Vgg19 pre-trained model in the MatConvNet data format.

• iterations – number of time that image should be trained against style_path. Default is
stylish.core.ITERATIONS_NUMBER.

• learning_rate – Learning Rate value to train the model. Default is stylish.core.
LEARNING_RATE.

• content_weight – weight of the content feature cost. Default is stylish.core.
CONTENT_WEIGHT.

13

Stylish, Release 0.4.0

• style_weight – weight of the style feature cost. Default is stylish.core.
STYLE_WEIGHT.

• tv_weight – weight of the total variation cost. Default is stylish.core.
TV_WEIGHT.

• content_layer – Layer name from pre-trained Vgg19 model used to extract the content
information. Default is stylish.vgg.CONTENT_LAYER.

• style_layers – Layer names from pre-trained Vgg19 model used to extract the style
information with corresponding weights. Default is stylish.vgg.STYLE_LAYERS.

• log_path – path to extract the log information. Default is the same path as the output
path.

Returns path to transformed image.

Note: Lists of all image formats currently supported

stylish.create_model(training_path, style_path, output_path, vgg_path, learning_rate=None,
batch_size=None, batch_shape=None, epoch_number=None, con-
tent_weight=None, style_weight=None, tv_weight=None, content_layer=None,
style_layers=None, limit_training=None, log_path=None)

Train a style generator model based on an image and a dataset folder

Usage example:

>>> create_model(
... "/path/to/training_data/",
... "/path/to/style_image.jpg",
... "/path/to/output_model/",
... "/path/to/vgg_model.mat"
...)

Parameters

• training_path – training dataset folder.

• style_path – path to an image from which the style features will be extracted.

• output_path – path where the trained model and logs should be saved

• vgg_path – path to the Vgg19 pre-trained model in the MatConvNet data format.

• learning_rate – Learning Rate value to train the model. Default is stylish.core.
LEARNING_RATE.

• batch_size – number of images to use in one training iteration. Default is stylish.
core.BATCH_SIZE.

• batch_shape – shape used for each images within training dataset. Default is
stylish.core.BATCH_SHAPE.

• epoch_number – number of time that model should be trained against training_images.
Default is stylish.core.EPOCHS_NUMBER.

• content_weight – weight of the content feature cost. Default is stylish.core.
CONTENT_WEIGHT.

• style_weight – weight of the style feature cost. Default is stylish.core.
STYLE_WEIGHT.

14 Chapter 5. API Reference

https://imageio.readthedocs.io/en/stable/formats.html

Stylish, Release 0.4.0

• tv_weight – weight of the total variation cost. Default is stylish.core.
TV_WEIGHT.

• content_layer – Layer name from pre-trained Vgg19 model used to extract the content
information. Default is stylish.vgg.CONTENT_LAYER.

• style_layers – Layer names from pre-trained Vgg19 model used to extract the style
information with corresponding weights. Default is stylish.vgg.STYLE_LAYERS.

• limit_training – maximum number of files to use from the training dataset folder. By
default, all files from the training dataset folder are used.

• log_path – path to extract the log information. Default is the same path as the output
path.

Returns None

Note: Lists of all image formats currently supported

stylish.apply_model(model_path, input_path, output_path)
Apply style generator model to a new image.

Usage example:

>>> apply_model(
... "/path/to/saved_model/",
... "/path/to/image.jpg",
... "/path/to/output_image/"
...)

/path/to/output/image.jpg

Parameters

• model_path – path to trained model saved.

• input_path – path to image to inferred model to.

• output_path – path folder to save image output.

Returns path to transformed image.

Note: Lists of all image formats currently supported

stylish.extract_style_pattern(path, output_path, vgg_path, style_layers=None)
Generate style pattern images from image path.

Usage example:

>>> apply_model(
... "/path/to/style_image.jpg",
... "/path/to/output/"
... "/path/to/vgg_model.mat"
...)

/path/to/output/image.jpg

5.1. stylish 15

https://imageio.readthedocs.io/en/stable/formats.html
https://imageio.readthedocs.io/en/stable/formats.html

Stylish, Release 0.4.0

Parameters

• path – path to the image to extract style pattern images from.

• output_path – path where the images will be generated.

• vgg_path – path to the Vgg19 pre-trained model in the MatConvNet data format.

• style_layers – Layer names from pre-trained Vgg19 model used to extract the style
information with corresponding weights. Default is stylish.vgg.STYLE_LAYERS.

Returns list of image paths generated.

5.1.1 stylish.command_line

stylish.command_line.CONTEXT_SETTINGS = {'help_option_names': ['-h', '--help'], 'max_content_width': 100}
Click default context for all commands.

5.1.2 stylish.core

stylish.core.BATCH_SIZE = 4
Default batch size used for training.

stylish.core.BATCH_SHAPE = (256, 256, 3)
Default shape used for each images within training dataset.

stylish.core.EPOCHS_NUMBER = 2
Default epoch number used for training a model.

stylish.core.ITERATIONS_NUMBER = 100
Default iteration number used for transferring a style to an image.

stylish.core.CONTENT_WEIGHT = 7.5
Default weight of the content for the loss computation.

stylish.core.STYLE_WEIGHT = 100.0
Default weight of the style for the loss computation.

stylish.core.TV_WEIGHT = 200.0
Default weight of the total variation term for the loss computation.

stylish.core.LEARNING_RATE = 0.001
Default Learning Rate.

stylish.core.create_session()
Create a Tensorflow session and reset the default graph.

Should be used as follows:

>>> with create_session() as session:
...

Returns Tensorflow session

stylish.core.extract_style_from_path(path, vgg_mapping, style_layers, image_size=None)
Extract style feature mapping from image path.

This mapping will be used to train a model which should learn to apply those features on any images.

Parameters

16 Chapter 5. API Reference

Stylish, Release 0.4.0

• path – path to image from which style features will be extracted.

• vgg_mapping – mapping gathering all weight and bias matrices extracted from a pre-
trained Vgg19 model (typically retrieved by stylish.vgg.extract_mapping()).

• style_layers – Layer names from pre-trained Vgg19 model used to extract the style
information with corresponding weights. Default is stylish.vgg.STYLE_LAYERS.

• image_size – optional shape to resize the style image.

list of 5 values for each layer used for style features extraction. Default is LAYER_WEIGHTS.

Returns

mapping in the form of:

{
"conv1_1/Relu": numpy.array([...]),
"conv2_1/Relu": numpy.array([...]),
"conv3_1/Relu": numpy.array([...]),
"conv4_1/Relu": numpy.array([...]),
"conv5_1/Relu": numpy.array([...])

}

stylish.core.optimize_image(image, style_mapping, vgg_mapping, log_path, iterations=None,
learning_rate=None, content_weight=None, style_weight=None,
tv_weight=None, content_layer=None, style_layer_names=None)

Transfer style mapping features to image and return result.

The training duration can vary depending on the Hyperparameters specified (iterations number) and the power
of your workstation.

Parameters

• image – 3-D Numpy array representing the image loaded.

• style_mapping – mapping of pre-computed style features extracted from
selected layers from a pre-trained Vgg19 model (typically retrieved by
extract_style_from_path())

• vgg_mapping – mapping gathering all weight and bias matrices extracted from a pre-
trained Vgg19 model (typically retrieved by stylish.vgg.extract_mapping()).

• log_path – path to save the log information into, so it can be used with Tensorboard to
analyze the training.

• iterations – number of time that image should be trained against the style mapping.
Default is ITERATIONS_NUMBER.

• learning_rate – Learning Rate value to train the model. Default is LEARNING_RATE.

• content_weight – weight of the content feature cost. Default is CONTENT_WEIGHT.

• style_weight – weight of the style feature cost. Default is STYLE_WEIGHT.

• tv_weight – weight of the total variation cost. Default is TV_WEIGHT.

• content_layer – Layer name from pre-trained Vgg19 model used to extract the content
information. Default is stylish.vgg.CONTENT_LAYER.

• style_layer_names – Layer names from pre-trained Vgg19 model used to ex-
tract the style information. Default are layer names extracted from stylish.vgg.
STYLE_LAYERS tuples.

Returns Path to output image generated.

5.1. stylish 17

Stylish, Release 0.4.0

stylish.core.optimize_model(training_images, style_mapping, vgg_mapping, model_path,
log_path, learning_rate=None, batch_size=None,
batch_shape=None, epoch_number=None, content_weight=None,
style_weight=None, tv_weight=None, content_layer=None,
style_layer_names=None)

Create style generator model from a style mapping and a training dataset.

The training duration can vary depending on the Hyperparameters specified (epoch number, batch size, etc.),
the power of your workstation and the number of images in the training data.

The model trained will be saved in model_path.

Parameters

• training_images – list of images to train the model with.

• style_mapping – mapping of pre-computed style features extracted from
selected layers from a pre-trained Vgg19 model (typically retrieved by
extract_style_from_path())

• vgg_mapping – mapping gathering all weight and bias matrices extracted from a pre-
trained Vgg19 model (typically retrieved by stylish.vgg.extract_mapping()).

• model_path – path to save the trained model into.

• log_path – path to save the log information into, so it can be used with Tensorboard to
analyze the training.

• learning_rate – Learning Rate value to train the model. Default is LEARNING_RATE.

• batch_size – number of images to use in one training iteration. Default is
BATCH_SIZE.

• batch_shape – shape used for each images within training dataset. Default is
BATCH_SHAPE.

• epoch_number – number of time that model should be trained against training_images.
Default is EPOCHS_NUMBER.

• content_weight – weight of the content feature cost. Default is CONTENT_WEIGHT.

• style_weight – weight of the style feature cost. Default is STYLE_WEIGHT.

• tv_weight – weight of the total variation cost. Default is TV_WEIGHT.

• content_layer – Layer name from pre-trained Vgg19 model used to extract the content
information. Default is stylish.vgg.CONTENT_LAYER.

• style_layer_names – Layer names from pre-trained Vgg19 model used to ex-
tract the style information. Default are layer names extracted from stylish.vgg.
STYLE_LAYERS tuples.

Returns None

stylish.core.compute_cost(session, style_mapping, output_node, batch_size=None, con-
tent_weight=None, style_weight=None, tv_weight=None, con-
tent_layer=None, style_layer_names=None, input_namespace=’vgg1’,
output_namespace=’vgg2’)

Compute total cost.

Parameters

• session – Tensorflow session.

18 Chapter 5. API Reference

Stylish, Release 0.4.0

• style_mapping – mapping of pre-computed style features extracted from
selected layers from a pre-trained Vgg19 model (typically retrieved by
extract_style_from_path())

• output_node – output node of the model to train.

• batch_size – number of images to use in one training iteration. Default is
BATCH_SIZE.

• content_weight – weight of the content feature cost. Default is CONTENT_WEIGHT.

• style_weight – weight of the style feature cost. Default is STYLE_WEIGHT.

• tv_weight – weight of the total variation cost. Default is TV_WEIGHT.

• content_layer – Layer name from pre-trained Vgg19 model used to extract the content
information. Default is stylish.vgg.CONTENT_LAYER.

• style_layer_names – Layer names from pre-trained Vgg19 model used to ex-
tract the style information. Default are layer names extracted from stylish.vgg.
STYLE_LAYERS tuples.

• input_namespace – Namespace used for the pre-trained Vgg19 model added after the
input node. Default is “vgg1”.

• output_namespace – Namespace used for the pre-trained Vgg19 model added after
output_node. Default is “vgg2”.

Returns Tensor computing the total cost.

stylish.core.compute_content_cost(session, layer_name1, layer_name2, batch_size=4, con-
tent_weight=7.5)

Compute content cost.

Parameters

• session – Tensorflow session.

• layer_name1 – Layer name from pre-trained Vgg19 model used to extract the content
information of input node.

• layer_name2 – Layer name from pre-trained Vgg19 model used to extract the content
information of output node.

• batch_size – number of images to use in one training iteration. Default is
BATCH_SIZE.

• content_weight – weight of the content feature cost. Default is CONTENT_WEIGHT.

Returns Tensor computing the content cost.

stylish.core.compute_style_cost(session, style_mapping, layer_names1, layer_names2,
batch_size=4, style_weight=100.0)

Compute style cost.

Parameters

• session – Tensorflow session.

• style_mapping – mapping of pre-computed style features extracted from
selected layers from a pre-trained Vgg19 model (typically retrieved by
extract_style_from_path())

• layer_names1 – Sorted layer names used in style_mapping.

5.1. stylish 19

Stylish, Release 0.4.0

• layer_names2 – Layer name from pre-trained Vgg19 model used to extract the style
information of output node.

• batch_size – number of images to use in one training iteration. Default is
BATCH_SIZE.

• style_weight – weight of the style feature cost. Default is STYLE_WEIGHT.

Returns Tensor computing the style cost.

stylish.core.compute_total_variation_cost(output_node, batch_size, tv_weight=200.0)
Compute total variation cost.

Parameters

• output_node – output node of the model to train.

• batch_size – number of images to use in one training iteration.

• tv_weight – weight of the total variation cost. Default is TV_WEIGHT.

Returns Tensor computing the total variation cost.

stylish.core.load_dataset_batch(index, training_images, batch_size=None,
batch_shape=None)

Return list of images for current batch index.

Usage example:

>>> for index in range(len(training_images) // batch_size)):
... images = load_dataset_batch(
... index, training_images,
... batch_size=batch_size
...)

Parameters

• index – index number of the current batch to load.

• training_images – complete list of images to train the model with.

• batch_size – number of images to use in one training iteration. Default is
BATCH_SIZE.

• batch_shape – shape used for each images within training dataset. Default is
BATCH_SHAPE.

Returns 4-dimensional matrix storing images in batch.

stylish.core.save_model(session, input_node, output_node, path)
Save trained model from session.

Parameters

• session – Tensorflow session.

• input_node – input placeholder node of the model trained.

• output_node – output node of the model trained.

• path – Path to save the model into.

Returns None

stylish.core.infer_model(model_path, input_path)
Inferred trained model to convert input image.

20 Chapter 5. API Reference

Stylish, Release 0.4.0

Parameters

• model_path – path to trained model saved.

• input_path – path to image to inferred model to.

Returns Path to output image generated.

5.1.3 stylish.filesystem

stylish.filesystem.create_log_path(style_path, relative_path=None)
Return Tensorflow log path.

Example:

>>> create_log_path("/path/to/Foo.jpg")
"/tmp/stylish/log/foo-2019-09-14_15:12:11/"

>>> create_log_path("/path/to/Foo.jpg", relative_path="/path")
"/path/stylish/log/foo-2019-09-14_15:12:11/"

Parameters

• style_path – path to an image from which the style features will be extracted.

• relative_path – Path to a folder to generate logs into. The temporary folder is used
otherwise.

Returns Path to save Tensorflow logs.

stylish.filesystem.load_image(path, image_size=None)
Return 3-D Numpy array from image path.

Parameters

• path – path to image file to load.

• image_size – targeted size of the image matrix loaded. By default, the image will not be
resized.

Returns 3-D Numpy array representing the image loaded.

Note: Lists of all formats currently supported

stylish.filesystem.save_image(image, path)
Save image_matrix to path.

Parameters

• image – 3-D Numpy array representing the image to save.

• path – path to image file to save image into.

Returns None

Note: Lists of all formats currently supported

stylish.filesystem.fetch_images(path, limit=None)
Return list of image paths from path.

5.1. stylish 21

https://imageio.readthedocs.io/en/stable/formats.html
https://imageio.readthedocs.io/en/stable/formats.html

Stylish, Release 0.4.0

Parameters

• path – path to the directory containing all images to fetch.

• limit – maximum number of files to fetch from path. By default, all files are fetched.

Returns list of image file path.

stylish.filesystem.ensure_directory(path)
Ensure directory exists at path.

Parameters path – directory path.

Returns None

stylish.filesystem.sanitise_value(value, substitution_character=’_’, case_sensitive=True)
Return value suitable for use with filesystem.

Parameters

• value – string value to sanitise.

• substitution_character – string character to replace awkward characters with. De-
fault is “_”.

• case_sensitive – indicate whether sanitised value should be kept with original case.
Otherwise, the sanitised value will be return in lowercase. By default, the original case is
preserved.

Returns sanitised value.

5.1.4 stylish.logging

stylish.logging.root = <sawmill.handler.distribute.Distribute object>
Top level handler responsible for relaying all logs to other handlers.

stylish.logging.configure(stderr_level=’info’)
Configure logging handlers.

A standard error handler is created to output any message with a level greater than stderr_level.

A file handler is created to log warnings and greater to stylish/logs under system temporary directory.

Parameters stderr_level – minimum level to record.

Note: Standard Python logging are redirected to sawmill to unify the logging systems.

class stylish.logging.Formatter(template, with_color=True)
Mustache template to format logs.

__init__(template, with_color=True)
Initialize with Mustache template.

format(logs)
Format logs for display.

class stylish.logging.Logger(name, **kw)
Extended logger with timestamp and username information.

prepare(*args, **kw)
Prepare and return a log for emission.

22 Chapter 5. API Reference

https://sawmill.readthedocs.io/en/stable/api_reference/index.html#module-sawmill
https://sawmill.readthedocs.io/en/stable/api_reference/log.html#sawmill.log.Log

Stylish, Release 0.4.0

__init__(name, **kw)
Initialise logger with identifying name.

clear()→ None. Remove all items from D.

clone()
Return a clone of this log.

This is a mixture of shallow and deep copies where the log instance and its attributes are shallow copied,
but the actual mapping (items) are deepcopied.

copy()→ a shallow copy of D

debug(message, **kw)
Log a debug level message.

error(message, **kw)
Log an error level message.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

info(message, **kw)
Log an info level message.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

log(message, **kw)
Log a message with additional kw arguments.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

warning(message, **kw)
Log a warning level message.

5.1.5 stylish.transform

The image transformation network is a deep residual convolutional neural network parameterized by weights.

The network body consists of five residual blocks. All non-residual convolutional layers are followed by an instance
normalization and ReLU non-linearities with the exception of the output layer, which instead uses a scaled “tanh” to
ensure that the output image has pixels in the range [0, 255]. Other than the first and last layers which use 9 × 9
kernels, all convolutional layers use 3 × 3 kernels.

See also:

Johnson et al. (2016). Perceptual losses for real-time style transfer and superresolution. CoRR, abs/1603.08155.

5.1. stylish 23

https://arxiv.org/abs/1603.08155

Stylish, Release 0.4.0

See also:

Ulyanov et al. (2017). Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR, abs/1607.08022.

stylish.transform.network(input_node)
Apply the image transformation network.

The last node of the graph will be returned. The network will be applied to the current Tensorflow graph.

Example:

>>> g = tf.Graph()
>>> with g.as_default(), tf.Session() as session:
... ...
... network(input_node)

Parameters input_node – 4-D Tensor representing a list of images. It will be the input of the
network.

stylish.transform.residual_block(input_node, operation_name, in_channels, out_channels, ker-
nel_size, strides)

Apply a residual block to the network.

Parameters

• input_node – Input tensor of the block

• operation_name – Name of the operation which will be set as a scope.

• in_channels – Number of channels at the input of the block.

• out_channels – Number of channels at the output of the block.

• kernel_size – width and height of the convolution matrix used within the block.

• strides – stride of the sliding window for each dimension of input_node.

stylish.transform.conv2d_layer(input_node, operation_name, in_channels, out_channels, ker-
nel_size, strides, activation=False)

Apply a 2-D convolution layer to the network.

Parameters

• input_node – Input tensor of the block

• operation_name – Name of the operation which will be set as a scope.

• in_channels – Number of channels at the input of the block.

• out_channels – Number of channels at the output of the block.

• kernel_size – width and height of the convolution matrix used within the block.

• strides – stride of the sliding window for each dimension of input_node.

• activation – indicate whether a ‘relu’ node should be added after the convolution layer.
Default is False.

stylish.transform.conv2d_transpose_layer(input_node, operation_name, in_channels,
out_channels, kernel_size, strides, activa-
tion=False)

Apply a transposed 2-D convolution layer to the network.

Parameters

• input_node – Input tensor of the block

24 Chapter 5. API Reference

https://arxiv.org/abs/1607.08022

Stylish, Release 0.4.0

• operation_name – Name of the operation which will be set as a scope.

• in_channels – Number of channels at the input of the block.

• out_channels – Number of channels at the output of the block.

• kernel_size – width and height of the convolution matrix used within the block.

• strides – stride of the sliding window for each dimension of input_node.

• activation – indicate whether a ‘relu’ node should be added after the convolution layer.
Default is False.

stylish.transform.instance_normalization(input_node, channels)
Apply an instance normalization to the network.

Parameters

• input_node – Input tensor of the block

• channels – Number of channels at the input of the block.

See also:

Ulyanov et al. (2017). Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR,
abs/1607.08022.

5.1.6 stylish.vgg

Training model computation module from a Vgg19 model.

The Vgg19 model pre-trained for image classification is used as a loss network in order to define perceptual loss
functions that measure perceptual differences in content and style between images.

The loss network remains fixed during the training process.

See also:

Johnson et al. (2016). Perceptual losses for real-time style transfer and superresolution. CoRR, abs/1603.08155.

See also:

Simonyan et al. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR,
abs/1409.1556.

And the corresponding Vgg19 pre-trained model in the MatConvNet data format.

stylish.vgg.STYLE_LAYERS = (('conv1_1/Relu', 1.0), ('conv2_1/Relu', 1.0), ('conv3_1/Relu', 1.0), ('conv4_1/Relu', 1.0), ('conv5_1/Relu', 1.0))
Default layers used to extract style features with coefficient weights.

stylish.vgg.CONTENT_LAYER = 'conv4_2/Relu'
Default layer used to extract the content features.

stylish.vgg.extract_mapping(path)
Compute and return weights and biases mapping from Vgg19 model path.

The mapping should be returned in the form of:

{
"conv1_1": {

"weight": numpy.ndarray([...]),
"bias": numpy.ndarray([...])

},
"conv1_2": {

(continues on next page)

5.1. stylish 25

https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Stylish, Release 0.4.0

(continued from previous page)

"weight": numpy.ndarray([...]),
"bias": numpy.ndarray([...])

},
...

}

path should be the path to the Vgg19 pre-trained model in the MatConvNet data format.

See also:

http://www.vlfeat.org/matconvnet/pretrained/

Raise RuntimeError if the model loaded is incorrect.

stylish.vgg.network(vgg_mapping, input_node)
Compute and return network from mapping with an input_node.

vgg_mapping should gather all weight and bias matrices extracted from a pre-trained Vgg19 model (e.g.
extract_mapping()).

input_node should be a 3-D Tensor representing an image of undefined size with 3 channels (Red, Green and
Blue). It will be the input of the graph model.

stylish.vgg.conv2d_layer(name, vgg_mapping, input_node)
Add 2D convolution layer named name to mapping.

The layer returned should contain:

• A 2D convolution node

• A ReLU activation node

name should be the name of the convolution layer.

vgg_mapping should gather all weight and bias matrices extracted from a pre-trained Vgg19 model (e.g.
extract_mapping()).

input_node should be a Tensor that will be set as the input of the convolution layer.

Raise KeyError if the weight and bias matrices cannot be extracted from vgg_mapping.

stylish.vgg.pool_layer(name, input_node)
Return max pooling layer named name.

The layer returned should contain:

• An max pooling node

name should be the name of the max layer.

input_node should be a Tensor that will be set as the input of the max layer.

26 Chapter 5. API Reference

http://www.vlfeat.org/matconvnet/pretrained/
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/relu
https://docs.python.org/3/library/exceptions.html#KeyError
https://www.tensorflow.org/api_docs/python/tf/nn/max_pool

CHAPTER 6

Release and migration notes

Find out what has changed between versions and see important migration notes to be aware of when switching to a
new version.

6.1 Release Notes

6.1.1 0.4.0

Released: 2019-07-07

• Added stylish train --layer-weights option to initialize weights for each layer from
STYLE_LAYERS. The default value was initially hard-coded to 0.2, but has now be changed to 1.0 as it pro-
duces better results. ¶

• Updated stylish, stylish.transform and stylish.vgg to uses name scopes as much as possible in
order to improve the graph visibility within Tensorboard. ¶

• Improved time display during training. ¶

6.1.2 0.3.0

Released: 2019-07-05

• Added stylish train --limit option to set a maximum number of files to use from the training dataset
folder. ¶

• Record style loss, content loss, total variation loss and the sum of all losses to generate scalar curves within
Tensorboard. ¶

6.1.3 0.2.0

Released: 2019-05-27

27

https://www.tensorflow.org/api_docs/python/tf/name_scope

Stylish, Release 0.4.0

• Added stylish download command line option to download elements necessary for the training (Vgg19
model and training data). ¶

• Added stylish.logging to manage logger using sawmill for convenience. ¶

• Removed stylish.train and moved logic within stylish to increase code readability. ¶

• [command line] Updated stylish.command_line to use click instead of argparse to manage the command
line interface for convenience. ¶

• Fixed stylish.transform.instance_normalization() logic. ¶

6.1.4 0.1.4

Released: 2018-05-19

• Always use GPU for the training when available. ¶

6.1.5 0.1.3

Released: 2018-05-19

• Updated stylish.train module to prevent fixing the shape of the input placeholder. ¶

6.1.6 0.1.2

Released: 2018-05-18

• Updated stylish.transform module to let the size of the images unknown when processing the check-
point. ¶

• Updated stylish.train.extract_model() to increase verbosity. ¶

6.1.7 0.1.1

Released: 2018-05-09

• Fixed --content-target command line option as it should take a single value, not a list of values. ¶

• Fixed stylish.train.extract_model() to pass the correct placeholder identifier to the session. ¶

6.1.8 0.1.0

Released: 2018-05-08

• Initial release. ¶

6.2 Migration notes

This section will show more detailed information when relevant for switching to a new version, such as when upgrading
involves backwards incompatibilities.

28 Chapter 6. Release and migration notes

https://sawmill.readthedocs.io/en/latest/
https://pypi.org/project/click/
https://docs.python.org/3/library/argparse.html

CHAPTER 7

Glossary

Convolutional Neural Network Convolutional Neural Network (CNN) is a class of Deep Neural Networks most
commonly applied to analyzing visual imagery.

See also:

https://en.wikipedia.org/wiki/Convolutional_neural_network

Deep Neural Network Deep Neural Networks (DNN) are Neural Networks with more than 2 layers between the
input and output layers.

See also:

https://en.wikipedia.org/wiki/Deep_learning

Hyperparameter Parameter whose value is set before the learning process begins. By contrast, the values of other
parameters are derived via training.

See also:

https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)

Learning Rate The learning rate or step size in machine learning is a hyperparameter which determines to what
extent newly acquired information overrides old information

See also:

https://en.wikipedia.org/wiki/Learning_rate

Machine Learning Scientific study of algorithms and statistical models that computer systems use to effectively
perform a specific task without using explicit instructions, relying on patterns and inference instead.

See also:

https://en.wikipedia.org/wiki/Machine_learning

MatConvNet MatConvNet is a MATLAB toolbox implementing Convolutional Neural Networks for computer vision
applications. It can store trained model in a “.mat” file.

See also:

http://www.vlfeat.org/matconvnet/

29

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning
https://en.wikipedia.org/wiki/Learning_rate
https://en.wikipedia.org/wiki/Machine_learning
http://www.vlfeat.org/matconvnet/

Stylish, Release 0.4.0

MATLAB MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and proprietary pro-
gramming language developed by MathWorks.

See also:

https://www.mathworks.com/help/matlab/

Mustache Simple web template system with implementations available for multiple languages

See also:

https://mustache.github.io

Neural Network Set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns.

See also:

https://en.wikipedia.org/wiki/Artificial_neural_network

TensorFlow An open source Machine Learning library for research and production

See also:

https://www.tensorflow.org/

Tensorboard TensorBoard provides the visualization and tooling needed for machine learning experimentation with
TensorFlow

See also:

https://www.tensorflow.org/tensorboard

Vgg19

VGG-19 is a Convolutional Neural Network that is trained on more than a million images from the Ima-
geNet database.

See also:

https://www.mathworks.com/help/deeplearning/ref/vgg19.html

Virtualenv A tool to create isolated Python environments.

See also:

https://virtualenv.pypa.io/en/latest/

30 Chapter 7. Glossary

https://www.mathworks.com/help/matlab/
https://mustache.github.io
https://en.wikipedia.org/wiki/Artificial_neural_network
https://www.tensorflow.org/
https://www.tensorflow.org/tensorboard
https://www.mathworks.com/help/deeplearning/ref/vgg19.html
https://virtualenv.pypa.io/en/latest/

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

31

Stylish, Release 0.4.0

32 Chapter 8. Indices and tables

Python Module Index

c
stylish.command_line, 16
stylish.core, 16

f
stylish.filesystem, 21

l
stylish.logging, 22

s
stylish, 13

t
stylish.transform, 23

v
stylish.vgg, 25

33

Stylish, Release 0.4.0

34 Python Module Index

Index

Symbols
-limit <limit>

stylish-train command line option,
11

-log-path <log_path>
stylish-train command line option,

11
stylish-transfer command line

option, 12
-model <model>

stylish-apply command line option, 9
-version

stylish command line option, 9
-vgg <vgg>

stylish-extract command line
option, 10

stylish-train command line option,
11

stylish-transfer command line
option, 12

-C, -content-weight <content_weight>
stylish-train command line option,

11
stylish-transfer command line

option, 12
-I, -iterations <iterations>

stylish-transfer command line
option, 12

-S, -style-weight <style_weight>
stylish-train command line option,

11
stylish-transfer command line

option, 12
-T, -tv-weight <tv_weight>

stylish-train command line option,
11

stylish-transfer command line
option, 12

-b, -batch-size <batch_size>

stylish-train command line option,
11

-e, -epochs <epochs>
stylish-train command line option,

11
-i, -input <input>

stylish-apply command line option, 9
stylish-transfer command line

option, 12
-l, -learning-rate <learning_rate>

stylish-train command line option,
11

stylish-transfer command line
option, 12

-o, -output <output>
stylish-apply command line option, 9
stylish-download-coco2014 command

line option, 10
stylish-download-vgg19 command

line option, 10
stylish-extract command line

option, 10
stylish-train command line option,

11
stylish-transfer command line

option, 12
-s, -style <style>

stylish-extract command line
option, 10

stylish-train command line option,
11

stylish-transfer command line
option, 12

-t, -training <training>
stylish-train command line option,

11
-v, -verbosity <verbosity>

stylish command line option, 9
__init__() (stylish.logging.Formatter method), 22
__init__() (stylish.logging.Logger method), 22

35

Stylish, Release 0.4.0

A
apply_model() (in module stylish), 15

B
BATCH_SHAPE (in module stylish.core), 16
BATCH_SIZE (in module stylish.core), 16

C
clear() (stylish.logging.Logger method), 23
clone() (stylish.logging.Logger method), 23
compute_content_cost() (in module stylish.core),

19
compute_cost() (in module stylish.core), 18
compute_style_cost() (in module stylish.core), 19
compute_total_variation_cost() (in module

stylish.core), 20
configure() (in module stylish.logging), 22
CONTENT_LAYER (in module stylish.vgg), 25
CONTENT_WEIGHT (in module stylish.core), 16
CONTEXT_SETTINGS (in module

stylish.command_line), 16
conv2d_layer() (in module stylish.transform), 24
conv2d_layer() (in module stylish.vgg), 26
conv2d_transpose_layer() (in module

stylish.transform), 24
Convolutional Neural Network, 29
copy() (stylish.logging.Logger method), 23
create_log_path() (in module stylish.filesystem),

21
create_model() (in module stylish), 14
create_session() (in module stylish.core), 16

D
debug() (stylish.logging.Logger method), 23
Deep Neural Network, 29

E
ensure_directory() (in module stylish.filesystem),

22
EPOCHS_NUMBER (in module stylish.core), 16
error() (stylish.logging.Logger method), 23
extract_mapping() (in module stylish.vgg), 25
extract_style_from_path() (in module

stylish.core), 16
extract_style_pattern() (in module stylish), 15

F
fetch_images() (in module stylish.filesystem), 21
format() (stylish.logging.Formatter method), 22
Formatter (class in stylish.logging), 22
fromkeys() (stylish.logging.Logger method), 23

G
get() (stylish.logging.Logger method), 23

H
Hyperparameter, 29

I
infer_model() (in module stylish.core), 20
info() (stylish.logging.Logger method), 23
instance_normalization() (in module

stylish.transform), 25
items() (stylish.logging.Logger method), 23
ITERATIONS_NUMBER (in module stylish.core), 16

K
keys() (stylish.logging.Logger method), 23

L
Learning Rate, 29
LEARNING_RATE (in module stylish.core), 16
load_dataset_batch() (in module stylish.core), 20
load_image() (in module stylish.filesystem), 21
log() (stylish.logging.Logger method), 23
Logger (class in stylish.logging), 22

M
Machine Learning, 29
MatConvNet, 29
MATLAB, 30
Mustache, 30

N
network() (in module stylish.transform), 24
network() (in module stylish.vgg), 26
Neural Network, 30

O
optimize_image() (in module stylish.core), 17
optimize_model() (in module stylish.core), 17

P
pool_layer() (in module stylish.vgg), 26
pop() (stylish.logging.Logger method), 23
popitem() (stylish.logging.Logger method), 23
prepare() (stylish.logging.Logger method), 22

R
residual_block() (in module stylish.transform), 24
root (in module stylish.logging), 22

S
sanitise_value() (in module stylish.filesystem), 22
save_image() (in module stylish.filesystem), 21
save_model() (in module stylish.core), 20
setdefault() (stylish.logging.Logger method), 23
STYLE_LAYERS (in module stylish.vgg), 25

36 Index

Stylish, Release 0.4.0

STYLE_WEIGHT (in module stylish.core), 16
stylish (module), 13
stylish command line option

-version, 9
-v, -verbosity <verbosity>, 9

stylish-apply command line option
-model <model>, 9
-i, -input <input>, 9
-o, -output <output>, 9

stylish-download-coco2014 command line
option

-o, -output <output>, 10
stylish-download-vgg19 command line

option
-o, -output <output>, 10

stylish-extract command line option
-vgg <vgg>, 10
-o, -output <output>, 10
-s, -style <style>, 10

stylish-train command line option
-limit <limit>, 11
-log-path <log_path>, 11
-vgg <vgg>, 11
-C, -content-weight

<content_weight>, 11
-S, -style-weight <style_weight>, 11
-T, -tv-weight <tv_weight>, 11
-b, -batch-size <batch_size>, 11
-e, -epochs <epochs>, 11
-l, -learning-rate <learning_rate>,

11
-o, -output <output>, 11
-s, -style <style>, 11
-t, -training <training>, 11

stylish-transfer command line option
-log-path <log_path>, 12
-vgg <vgg>, 12
-C, -content-weight

<content_weight>, 12
-I, -iterations <iterations>, 12
-S, -style-weight <style_weight>, 12
-T, -tv-weight <tv_weight>, 12
-i, -input <input>, 12
-l, -learning-rate <learning_rate>,

12
-o, -output <output>, 12
-s, -style <style>, 12

stylish.command_line (module), 16
stylish.core (module), 16
stylish.filesystem (module), 21
stylish.logging (module), 22
stylish.transform (module), 23
stylish.vgg (module), 25

T
Tensorboard, 30
TensorFlow, 30
transform_image() (in module stylish), 13
TV_WEIGHT (in module stylish.core), 16

U
update() (stylish.logging.Logger method), 23

V
values() (stylish.logging.Logger method), 23
Vgg19, 30
Virtualenv, 30

W
warning() (stylish.logging.Logger method), 23

Index 37

	Introduction
	Installing
	Tutorial
	Command line
	API Reference
	Release and migration notes
	Glossary
	Indices and tables
	Python Module Index
	Index

